Lab: Mission Possible

Modified from the Need Project

Background Information: Your team has been hired by the governor of Essowess to develop a plan to expand the electricity capacity for the country. Your country is growing and has begun to experience brownouts during peak demand times. Your mission is to develop a plan that will meet the electricity demand of Essowess economically while maintaining the quality of the country's environment. Essowess has many resources that can be used to produce the electricity it will need in the future. You can use any mixture of sources and as many of each as allowed, as long as you produce the required amount of electricity while staying within your budget and maintaining the environmental quality of the country. You must convince the governor and the citizens of the country that your plan is the best possible plan for everyone in terms of jobs, the environment, the cost of electricity and changes in lifestyle.

The Goal:

CURRENT STATUS	NEEDED FUTURE STATUS
1,000 MW capacity (energy produced)	1,500 MW capacity or more
1,000 energy bucks (think billions of dollars)	1,600 energy bucks or less
1,000 enviro-units (think units of pollution)	1,000 enviro-units or less
\$0.03 per kWh of electricity (cost to consumers)	\$0.035 per kWh or less

You currently own 15 coal-burning power plants. Five of these are old and must be closed or modernized, although you may close or modernize more. To create a successful power portfolio, you will need to build additional power plants. Your options and their parameters are listed below. You do not need to build every type of power plant.

TO CLOSE A CO Investment: Capacity Loss: Enviro Impact:	AL PLANT 10 energy bucks 40 MW -100 enviro-units	TO MODERNIZI Investment: Capacity Gain: Enviro Impact: Cost:	A COAL PLANT 10 energy bucks 10 MW -50 enviro-units \$0.04 per kWh	TO BUILD AN A Investment: Capacity Gain: Enviro Impact: Cost:	DDITIONAL COAL PLANT 40 energy bucks 50 MW 100 enviro-units \$0.04 per kWh
TO BUILD A WI	ND FARM	TO BUILD A HY	DROELECTRIC DAM	TO BUILD A NU	CLEAR POWER PLANT
Investment:	25 energy bucks	Investment:	50 energy bucks	Investment:	60 energy bucks
Capacity Gain:	10 MW	Capacity Gain:	25 MW	Capacity Gain:	40 MW
Enviro Impact:	-50 enviro-units	Enviro Impact:	0 enviro-units	Enviro Impact:	0 enviro-units
Cost:	\$0.04 per kWh	Cost:	\$0.01 per kWh	Cost:	\$0.03 kWh
TO BUILD A BIC	DMASS ENERGY PLANT	TO BUILD A NA	TURAL GAS PLANT	TO BUILD A GE	OTHERMAL PLANT
Investment:	15 energy bucks	Investment:	50 energy bucks	Investment:	25 energy bucks
Capacity Gain:	10 MW	Capacity Gain:	50 MW	Capacity Gain:	20 MW
Enviro Impact:	0 enviro units	Enviro Impact:	50 enviro-units	Enviro Impact:	-20 enviro units
Cost:	\$0.05 per kWh	Cost:	\$0.04 per kWh	Cost:	\$0.05 per kWh

FACILITY	QUANTITY	CAPACITY MW	FINAL COST e-bucks	ENVIRO IMPACT enviro-units	PRICE dollars per kWh
Existing Plants	15	1,000	1,000	1,000	0.03 1000 x 0.03 = 30.00
Close Plants	-2	-2 x (40) = -80	20	-200	0.03 -80x 0.03 = -2.40
Modernize Plants	(3)	3 x 10 = 30	3 x (15–5) = 30	-150	0.04 30 x 0.04 = 1.20
Coal	2	2 x 50 = 100	2 x (50–10) = 80	2 x 100 = 200	0.04 100 x 0.04 = 4.00
Wind	2	2 x 10 = 20	2 x (25+5-5) = 50	2 x (-50) = -100	0.04 20 x 0.04 = 0.80
Hydropower	1	25	50 - 10 + 10 = 50	0	0.01 25 x 0.01 = 0.25
Nuclear	3	3 x 40 = 120	3 x (70–10) = 180	0	0.03 120 x 0.03 = 3.60
Waste-to-Energy	5	5 x 10 = 50	5 x (20–5) = 75	0	0.05 50 x 0.05 = 2.50
Natural Gas	3	3 x 50 = 150	3 x (80–30) = 150	3 x 50 = 150	0.04 150 x 0.04 = 6.00
Geothermal	5	5 x 20 = 100	5 x (30–5) = 125	5 x (-20) = -100	0.05 100 x 0.05 = 5.00
TOTALS	34	1,515	1,760	800	** 0.034

** To determine the average price of electricity per kWh, use the formula below:

Sum of all sources [(Capacity for source) X (Cost per kWh)] / Total Capacity

30.00 - 2.40 + 1.20 + 4.00 + 0.80 + 0.25 + 3.60 + 2.50 + 6.00 + 5.00 = 50.95

50.95 / 1515 = 0.034

(Note that the sample energy plan produces an adequate amount of power at an acceptable price and protects the environmental quality, but is over budget.)

MISSION POSSIBLE ENERGY PLAN

FACILITY	QUANTITY	CAPACITY MW	FINAL COST* e-bucks	ENVIRO IMPACT enviro-units	PRICE dollars per kWh
Existing Plants	15	1,000	1,000	1,000	\$ 0.03
Close Plants			05. 7 (1		
Modernize Plants			- and and a	A state	
Coal			and the second second		
Wind					
Hydropower					
Nuclear	12.1 6	n hin Ala	1 - 1 - 1 - 2 -	Sec. 1	
Waste-to-Energy					
Natural Gas				1277	
Geothermal			1.011-00 001	95.x2	1
TOTALS			2		**

* To determine the final cost, use the formula below:

Final Cost = Investment cost - economic gain + economic loss

** To determine the average price of electricity per kWh, use the formula below:

Sum of all sources [(Capacity for source) X (Cost per kWh)] /Total Capacity