\qquad

Lab: Tree Cookies MAKEUP ASSIGNMENT

Remember: As per GHHS Policy, you have two days for each day absent to makeup assignments.

(modified from National Center for Atmospheric Research)
Background: They're round. They're full of fiber. But unless you are a termite, you can't eat tree cookies! Tree cookies are cross sections of tree trunks that are used to illustrate how trees grow. Tree cookies reveal the many different layers that make up a tree. Each layer can tell you something about the tree's life and the climate in which it grew. The study of the growth of tree rings is called dendrochronology.

The cambium is a very thin layer of growing tissue that produces new cells that become either xylem, phloem or more cambium. Every growing season, a tree's cambium adds a new layer of xylem to its trunk, producing a visible growth ring in most trees. The cambium is what makes the trunk, branches and roots grow larger in diameter.

The xylem, or sapwood, comprises the youngest layers of wood. Its network of thick-walled cells brings water and nutrients up from the roots through tubes inside of the trunk to the leaves and other parts of the tree. As the tree grows, xylem cells in the central portion of the tree become inactive and die. These dead xylem cells form the tree's heartwood.

As a tree grows, older xylem cells in the center of the tree become inactive and die, forming heartwood. Because it is filled with stored sugar, dyes and oils, heartwood is usually darker than sapwood. The main function of the heartwood is to support the tree.

The phloem or inner bark, which is found between the cambium and the outer bark, acts as a food supply line by carrying sap (sugar and nutrients dissolved in water) from the leaves to the rest of the tree.

The outer bark, which originates from phloem cells that have worn out, died and been shed outward, acts as a suit of armor against the world by protecting the tree from insects, disease, storms and extreme temperatures. In certain species, the outer bark also protects the tree from fire.
(source: nc forestry association)
Research from Dr. Glenn Juday at the University of Alaska Fairbanks has determined the relationship temperature and precipitation have with white spruce tree growth. His formula states that the growth in one year is determined 60% by this year's precipitation, 30% by last year's precipitation and 10% by precipitation from year before last. For temperature, the growth in one year is determined 80% by this year's temperature and 20% by last year's temperature. With this, you can see that precipitation and temperature over several years impact a single year of tree growth.

Prelab Questions:

1. What is a tree cookie?
2. What is the role of the cambrium in tree growth?
3. How are xylem and heartwood related?
4. Describe the difference between inner bark and outer bark.
5. What are the two main factors that determine tree growth rate?

What We Did in Class:

Students analyzed a tree cookie by observing the characteristics and measuring the width of growth rings. Using that data, students then calculated the percent growth for each year.

Analysis:

7. Why might some trees show different ring thicknesses during the same year?
8. What factors could be affecting tree growth other than local climate?
9. Why do climatologists need at least 30 years of data to describe the climate of a region?
10. Describe how dendrochronologists determine climate patterns for time frames longer than the lifespan of a single tree. Be specific. (hint: overlap)

Watch the video https://www.youtube.com/watch?v=TfZnp091kHk and answer the following 11. Where does new growth occur in trees?
12. What is the benefit of using an increment borer to analyze tree growth?
13. How old are the oldest trees being analyzed in the video (from swamp burial)?
14. How is the age determined in trees that have long since died?
15. What is the range of tree history demonstrated in the video?
16. What have you learned from this makeup lab?

