Evolution and Biodiversity Chapter Four

4.6 BYA – How Do We Know?

•	James – Principle of Uniformitarianism: current geologic process are the same today as the past	
•	Nicholas Steno – Law of: undeformed sedimentary rock layers are older than layers above them	
	O Sedimentary rock in glacial lakes have clear, consistent sedimentation rates. Age may be determined by	
	counting the layers (varves).	
•	Radiometric Dating: Elements emit particles and energy at a constant measurable rate based on half-life.	
	Common elements used include U-238, K-40, C-14	
•	Fission Track Dating measures damage tracks from the spontaneous fission of U-238	
•	Thermoluminescence Dating measures how much time has passed since object was heated	
•	Solar Evolution: The sun is approximately billion years old based on its mass and the ratio of	
	hydrogen and helium	
	ny di ogen und nymum	
	The Fossil Record	
•	study fossils to learn about the earth's history	
•	Fossils remains of plants or animals from a previous geological time that provide clues for climate, geologic	
	events, and evolution	
•	Fossil are only found in rock	
•	Trace Fossils are parts, footprints, burrows, etc	
	F,,	
	Formation of Fossils	
•	There are many types of fossils	
	 Mummification – drying, often in desert 	
	o – hardened tree sap	
	 Tar Beds – thick petroleum at surface 	
	 (La Brea Tar Pit in CA is 15,000 years old) 	
	 Freezing – often in Siberia 	
	 Petrification – solutions (ground water) replace original organic materials 	
	o Imprints, Molds, and Casts in sand or mud	
	 Coprolites – fossilized dung or waste (poop!) 	
	 Gastroliths – fossilized digestive stones or eggs 	
•	fossils are found exclusively in rock layers of a particular geologic age	
	o Trilobites are 245 – 570 million years old	
	Geologic Time	
	Four Eras: Precambrian, Paleozoic, Mesozoic, Cenozoic	
	Important Periods: Permian, Cretaceous	
	Are We In a New Epoch?	
•	First proposed in 2000, the is used to describe the current epoch due to the significant influence	
	humans have had on the planet in the last 150 years.	
	Chemical Evolution	
_		
• Chemical evolution of the organic molecules, bipolymers, and systems of chemical reactions were first necessary the first materials to all a heart and hillion many.		
_	to form the first protocells took about one billion years.	
•	Russian biochemist Alexander first hypothesized that energy from lightning, volcanoes, and intense	
	UV light created the first organic molecules from inorganic chemicals. This has been proven true in a number of experiments since 1053	
	experiments since 1953.	

Biological Evolution

0	ical evolution is the change in a population's genetic makeup through successive generations. it is VERY important to understand that, not individuals, evolve by becoming genetically
	different
0	microevolution describes the small changes that occur in a population
0	macroevolution describes long-term, large-scale evolutionary changes among groups of species
	Microevolution
Micro	evolution works through four processes:
0	of the structure or number of DNA molecules
0	natural selection for individuals of a population that have genetically based traits that cause them to survive and produce more offspring than other individuals
0	gene, which is the movement of genes between populations
0	genetic drift; fluctuations of gene frequency in the gene pool (genetic composition of a population)
	Natural Selection
The pr	ocess of natural selection occurs when some individuals of a population have genetically based traits that
_	them to better survive and produce offspring.
O	This trait is called an, or adaptive trait.
0	A factor in a population's environment that causes natural selection to occur is known as a selective
O	pressure.
The co	ncept of natural selection was developed by Charles in 1846 and was published in <i>On the</i>
Origin	of Species by Means of Natural Selection (1859). Natural selection is based on three conditions:
0	natural variability of a trait within a population
0	the trait is heritable
0	the trait leads to differential
There:	are three types of natural selection:
0	directional natural selection causes (gene forms) frequencies to shift toward one end of the
	normal range, eliminating the other end
0	stabilizing natural selection causes allele frequencies to shift toward the of the normal range
	eliminating both ends
0	diversifying natural selection causes allele frequencies to shift toward both ends, eliminating the middle
	Common Examples of Transitional Forms
0	Left Above: <i>Eohippus</i>
0	Right Above: Acanthostega
0	Right Below: Archaeopteryx
0	Left Below: Ambulocetus
	Speciation
Specia	tion is the process by which two species arise from one.
0	The first step in speciation is geographic, which is the physical separation of two groups of
	the same population for fairly long periods into areas with different environmental conditions.
The se	cond step is reproductive isolation, which is when the two groups become so different, through mutation
	tural selection, that they are no longer able to interbreed.
	Biodiversity
Specia	tion leads to greater species diversity. Species diversity, or species, of a community is the
	r of species it contains. Biodiversity can refer to genetic, species and habitat diversity.
	lative abundance of individuals within each of those species is species

Species Diversity

•	The differences in species diversity between ecosystems is explained by Robert MacArthur and Edward O. Wilson, who in 1960 developed the species equilibrium model or the theory of
	o the species diversity of an island is determined by a balance between two factors: the immigration rate
	and the extinction rate.
	o Immigration and extinction rates are affected by the size of the island and its distance from a mainland
	source of immigrant species.
	Generalist vs. Specialist
•	Generalist species have broad They can tolerate a wide range of environmental conditions. (ex.
	mice, white-tailed deer, channel catfish, cockroaches, humans)
•	Specialist species have narrow niches, which makes them prone to becoming endangered when environmental conditions change. (ex. tiger salamanders, spotted owls, giant)
	Species Classification
•	Native species are species that normally live and thrive in a particular ecosystem.
•	Species that migrate into an ecosystem or, more commonly, are introduced by humans (either by accident or
•	deliberately), are known by several names: introduced, nonnative,, or alien species. Indicator species are species whose presence or absence demonstrates a distinctive aspect of an ecosystem.
•	species are species that play a pivotal role in the integrity of an ecosystem.
	species are species that play a protantole in the integrity of an ecosystem.
	Modern Evolutionary Theory
•	Modern evolutionary theory has progressed far beyond Darwinism to reflect new advances in science.
	O (Stephen Jay Gould & Niles Eldredge) - Evolution consists of long periods of
	time of little change with brief periods of rapid change (tens of thousands of years) O Hardy-Weinberg Equilibrium - Allele frequencies of a population stay constant over time unless specific
	disturbing influences occur (ie. mutations, selection, genetic drift)
	o Genetic Engineering & Artificial Selection - Human manipulation of genetic structure and/or breeding has
	led to new species or new traits in existing species
	Extinction
•	When environmental conditions change, a species may either evolve or become extinct
•	% of all species that have ever existed on Earth are now extinct. Speciation and extinction are
	affected by several major factors
	 large scale movements of the continents gradual climate changes (continental drift, orbit shifts of the earth)
	o rapid climate change (large volcanic eruptions, asteroid impact)
	o human influence
•	Genetically diverse populations are more likely to survive these stressors.
•	Inevitably, some species disappear at some low rate called background extinction. (1-10 species per year)
•	An abrupt rise in extinction rates above the background level is classified as a mass extinction.
	There have been five major mass extinction events in the earth's history. The largest was,
	250 million years ago, with the disappearance of 90% of all marine species. The last mass extinction was
	the, 65 million years ago, marking the end of the dinosaurs.