Aquatic Ecology: Biodiversity in Aquatic Systems Chapter 7

- 1. What are the two major types of aquatic life zones?
- 2. Give two examples of each of these two major types of aquatic life zones.
- 3. The major types of organisms found in aquatic environments are determined by the water's
- 4. What two types of organisms comprise coral? What type of symbiosis is occurring here?
- 5. What is each of the two "players" contributing to the coral relationship?
- 6. What role does calcium carbonate play in coral reefs?
- 7. Describe three significant ecological services provided by coral reefs:
- 8. Describe three significant economic services provided by coral reefs:
- 9. Describe five major threats to the world's coral reefs.
- 10. Describe coral bleaching; include a discussion of the two dominate causes of coral bleaching.
- 11. Be familiar with the main kinds of organisms in Aquatic Life Zones:
 - Plankton = weak swimmers, free-floating; (types of Phyto-, Nano-, Zoo-)
 - Nekton = strong swimmers, consumers, e.g.,
 - o Benthos = bottom-dwellers, e.g., _____
 - Decomposers = mostly ______
- 13. Describe four major differences between life on Land and life in Water:
- 14. Species and Habitat Diversity:
 - The Third Dimension --> great variety of organisms
 - Smaller number of distinctly different habitats than on land
 - Less pronounced/fixed physical boundaries than on land
 - Endemism much less common in water habitats than Land (Except: some benthic critters)
- 15. Trophic Structure and Food webs:
 - o In open water, most plants are "micro-floaters", vs. larger land plants rooted in soil
 - Zooplankton smaller than land herbivores
 - More trophic levels --> greater complexity than on land
 - o Fluid medium and varied benthic habitats --> more ways of obtaining food than on land
- 15. Population Characteristics:
 - High Reproductive Output and Short Life Cycles --> significant fluctuations in Pops.
 - Early separation of young from parents
- 16. Monitoring and Protection:
 - More difficult to monitor/study aquatic ecosystems than land ecosystems
 - More Uncertainty regarding Aquatic than Land
- 17. Important Factors Limiting Types and Numbers of Organisms found in the Surface, Middle, and Bottom layers:
 - Temperature
 - Access to Sunlight
 - Dissolved Oxygen level
 - Nutrient Availability
 - e.g., *Photosynthesis primarily occurs in which ocean zone
 - *The amount of oxygen dissolved in water varies due to? (Name four significant factors which directly influence D.O. levels)
 - * Open Ocean: is it abundant or limited in the supply of nitrates and/or phosphates

- 18. Saltwater Life Zones: Discuss/Explain the roles played by oceans in terms of:
 - o "Climate Regulators":
 - "Housing Provided":
 - o "Dispersing & Diluting":
- 19. The two major life zones of the Ocean(s):
 - o Coastal Zone = ______
 - o Open Ocean/sea
 - Coastal Zone: approximately 10% of all ocean's area, but 90% of all marine species found here; site of most large commercial marine fisheries; very high NPP; varied habitats.
 - Explain how/why coastal zones are the "High NPP" areas which they are; what factors and/or what "dynamics" contribute to this "rich NPP" characteristic?
 - Human Population: 40% of world's population lives within 100 miles of a coast;
 - Potential impacts on coastal water quality?
- 20. Estuaries and Coastal Wetlands:
 - Define an Estuary:
 - Temperature and Salinity in estuaries vary due to what factors?
 - Describe two economic and two ecological services provided by estuaries and Their associated Coastal Wetlands
 - Describe three human impacts on Estuaries and Coastal Wetlands:
- 21. The loss of mangrove forests in tropical coastal nations is primarily due to what major contributing factors?
- 22. Describe four specific ways in which biodiversity is reduced/limited in intertidal zones.
- 23. Describe barrier islands.
- 24. Where are coral reefs found, generally?
- 25. Be familiar with the contributing factors in the loss of coral reefs: (tie in to question #9):
 - Slow growth, Easily disrupted, Clear water of constant temperature (64-86 F, 18-30 C) and relatively constant salinity.
 - Coral bleaching can be triggered by just a 1 degree C increase.
 - Connection of Coral Loss due to Global warming?? Discuss this possible connection(s):
 - What are the biggest threats to the biodiversity of Coral Reefs: Describe five: (again, overlap with question #9)
- 26. Name the three vertical zones of the Open Sea.
- 27. Is the average Gross Primary Productivity(GPP) and Net Primary Productivity(NPP) of The Open Ocean relatively high or low, overall? Explain: (this is relative to other aquatic life zones and biomes)
- 28. Identify the major causes of the depressions which form lake substrate:
- 29. Briefly describe each of the following Lake Zones:
 - Littoral Zone:
 - Limnetic Zone:
 - Profundal Zone:
 - o Benthic Zone:
- 30. Describe the relative ages, nutrient content, and primary productivity of each of the following:
 - o Eutrophic:
 - Mesotrophic:
 - o Oligotrophic:
- 31. Describe what Cultural Eutrophication is, including the sequence of events which take place following an input of nitrates and/or phosphates:
- 32. Describe two predominate causes of cultural eutrophication:
- 33. Does Eutrophication occur naturally? Explain:
- 34. Be familiar with the dynamics of Fall and Spring Turnover:

	0	What characteristic(s) do lakes which "turnover" possess? (Where are they?)	
	0	Water is most dense at degrees C, = degrees F.	
	0	The freezing temperature of water is degrees C, therefore, water is (more or	
		less?) dense at 4 degrees C.	
	0	The above 2 facts are nice, but why are thet significant?	
	0	What does thermal stratification refer to?	
	0	When surface water gradually cools in the fall, its density and it when it	
		cools to 4 degrees C, causing the disappear.	
	0	This turnover brings from the bottom to the top and from	
		top to bottom.	
	0	Illustrate the relative positions of the following:	
		 Epilimnion 	
		 Thermocline 	
		Hypolimnion	
	0	During Fall and Spring Overturn, the Temperature of the lake and Dissolved Oxygen	
٥-	VA /I= = (levels are roughly the same at all depths.	
35.	vvnat	is a Watershed? It is synonymous with	
		niliar with the three components of watersheds: A. Source Zone: B. Transition Zone: C.	
Floodplain Zone: 37. Why are Freshwater (FW) Inland Wetlands important? Provide three specific economic and/o			
	-	· · ·	
ecological reasons: 38. Be familiar with each of the following FW Inland Wetlands: Marshes, Swamps, Prairie			
50.		les, Bogs (fed solely by precipitation), Fens (fed by surface runoff and groundwater, in	
		on to precipitation), Wet Arctic Tundra, Floodplain Wetlands, Seasonal Wetlands(Prairie	
		Potholes, Floodplain wetlands, Bottomland hardwood swamps. The presence of cattails,	
		hes, and red maples are often used to "confirm" seasonal wetland areas (when dry for a	
		l of years).	
39.	Descr	ibe five important ecological and/or economic roles of Inland Wetlands:	
		Provide food & habitats for fish, migratory waterfowl, shorebirds: (approx. one-third of E/	
	•	cies in the U.S.A. are found in Inland Wetlands)	
		niliar with the major human impacts on Inland wetlands:	
		Drained, dredged, filled-in/covered over	
		nnual loss of Inland wetlands in the U.S.A. = 400 square km (150 sq. miles)	
	Appro	ximately 80% of this is due to, with the remaining loss due ing, forestry, oil/gas extraction, highway construction, and urban/suburban	
		n/development	
41		Grand Lesson" = Everything is Connected	
		The Watershed Approach: maintain the integrity of/protecting the whole, not only the	
	-	dual river/stream/tributary.	
		,	

Important Terminology & Concepts Chapter 7

- 1. Aquatic Life Zones
- 2. Saltwater/Marine & Freshwater
- 3. Coral Reefs
- Salinity
 Plankton: Phyto-, Nano-, Zoo-
- 6. Nekton
- 7. Benthos/Benthic
- 8. Decomposers

- 9. Euphotic Zone
- 10. Coastal Zone
- 11. Continental Shelf
- 12. Estuary
- 13. Coastal Wetlands
- 14. Intertidal Zone
- 15. Barrier Islands/Beaches
- 16. Watershed/Draainage Basin
- 17. Source Zone, Transition Zone, Floodplain Zone
- 18. Inland Wetlands
- 19. Marshes
- 20. Euphotic Zone (worth repeating)
- 21. Bathyal Zone
- 22. Abyssal Zone
- 23. Deposit Feeders
- 24. Filter Feeders
- 25. Freshwater Life Zones: salt concentration of less than 1%
- 26. Lentic Bodies of Freshwater
- 27. Lotic Bodies of Freshwater
- 28. Littoral Zone
- 29. Limnetic Zone
- 30. Profundal Zone
- 31. Benthic Zone
- 32. Oligotrophic Lake
- 33. Mesotrophic Lake
- 34. Eutrophic Lake
- 35. Eutrophication
- 36. Cultural Eutrophication
- 37. Thermal Stratification
- 38. Fall Turnover(Overturn)
- 39. Spring Turnover(Overturn)
- 40. Epilimnion
- 41. Thermocline
- 42. Hypolimnion
- 43. Surface Water/(associated Runoff of some of this)
- 44. Swamps
- 45. Prairie Potholes
- 46. Floodplains
- 47. Bogs
- 48. Fens
- 49. Wet Arctic Tundra
- 50. Seasonal Wetland