PLATE TECTONICS - BONUS NOTES: Earth: A Unique Planet

Earth is covered by _____ water and about _____ of that water is in the ______. We have learned about Earth's interior by studying ______, which are vibrations that travel through the earth. These can be caused by earthquakes or explosions near the surface.

In 1909 a Croatian scientist, Andrija Mohorovičić, used the information from seismic waves to determine that all layers of Earth weren't ______. He is credited with finding the ______, which is a boundary between the crust and the mantle.

Plata Tectonics

Plate Tectonics	Greenland Norway
Continental Drift	Appalachians & Britain
The idea that the continents have changed locations throughout history is known a	IS Norm Realized Africa
• Single landmass, means "all lands"	Cape Fold Belt
• One huge ocean, means "all seas"	Figure 2.5 When continents are brought together, their mountain ranges form
Evidence of Continental Drift:	
proposed the theory of continental drift. In addition to	
Wegener soon found other evidence to s	support his hypothesis.
1.) Fossil Evidence:	
•, a small, extinct land reptile was found on both	h South America and Africa.
• There was no evidence of and the animal could not	have swam across the
2.) Geological Evidence:	
• The and of rock in coastal regions of	and matched
closely.	
Mountain chains (ex) that ended on or	ne coastline seemed to
on the coastline of other landmasses.	
3.) Climatic Changes:	
Layers of debris from were found in	and
• deposits were found in,	and
**Many Scientists rejected Wegener's idea because it lacked	· **
Seafloor Spreading:	
The is an undersea mountain range, w	with a steep, narrow valley
running down its	
Scientists in the 1950s discovered that the ocean floor was	than the
(!!)	
Harry Hess and Robert Dietz explained this movement, known as	

Paleomagnetism:

- When ______ cools and solidifies, ______ minerals become magnetized.
 The magnetic orientation of these minerals becomes _______ and points towards the ______.
 The validity of this idea grew when scientists discovered the _______ of the magnetism of the ocean floor.
 In 1965 scientists discovered a _______ in the earth's magnetic orientation
 This was the evidence that _______ was looking for to support his theory of _______.

 The Theory of Plate Tectonics:

 The _______ describes not only continental _______ but
 - also presents a possible explanation of why and ______ the continents move.
 Two types of crust: ______ and _____. To date _____ plates have been identified.

Oceanic and continental crust AND the rigid upper mantle make up the ______. Under this lies the ______, which is solid rock that flows like melted silly putty due to extreme heat and pressure.

3 Types of Lithospheric Plate Boundaries:

1.)

- Two plates moving away from each other
- Forms a _____
 - A narrow valley that forms as two plates separate. (ex: at center of a mid-ocean ridge)

• ex. _____

•

2.) _____ (warning – there are three variations of this one, based on the types of crust involved)

- Two plates colliding with each other
 - _____ area where one plate slides under another plate
- ______ this is the feature that you see at a subduction zone

THREE VARIATIONS OF CONVERGENT BOUNDARIES

- A. _____:
- 2 plates push together
- fold upward to form folded mts.
- Ex. Himalayas and Appalachains

B. _____:

- 2 plates push together
- the older oceanic plate is pushed down (subducts)
- forms volcanic island arc (chain of volcanic islands)
- ex. Aleutian Islands and Japanese Islands

C. _____:

- 2 plates push together
- the oceanic plate subducts
- volcanic mountains are formed on the continent's edge
- ex. Andes Mountains and Cascade Mountains

3.) _

- 2 plates are grinding past each other
- usually move in a series of sudden movement separated by periods of no motion
- Ex. _____

Causes of Plate Motion:

- the transfer of heat thru the movement of heated

material, it is a cycle of warm rising currents and cold currents sinking

- Scientists have measured the amount of ______ leaving rocks at various points in the
 - _____. Hot ______ are rising along these boundaries, thus

explaining the temperature difference.

Create a sketch to show convection currents.

Tip of Indian plate

Ancient oceanic

crust

BEFORE

Suspect Terranes:

- theory that continents are patches of land that have different

distinct geologic histories

- Blocks of ______ are carried along the ocean floor by the action of ______. When they meet a ______, subduction occurs.
- Geologists have found evidence to support this theory in ______.

Deformation of the Crust

How the Crust is Deformed:

- the bending, breaking, and tilting of the earth's crust		
-	nents of the crust in an attempt to reach	
isostasy – which is the balance of the upward and down	ward forces that act on the earth's crust.	
Isostatic adjustment and plate movement cause in the rocks that make up the earth's crust. Stress		
is a force that causes in the rocks of the crust.		
This stress causes in crustal rocks. Strain is a change in the or		
of rocks that results from being squeezed, twisted or pulled apart.	Draw & label the 3 types of folds.	
<u>Stress – 3 Types</u>		
1		
2		
3		

The Results of Stress:

- flat layers of rock are under severe compression and are squeezed from the sides. The layers moved into folded positions without breaking (although some cracks may appear)

- _____- upward folds
- _____ downward folds
 - _____- gently dipping bends in

Sketch a monocline

horizontal rock layers

Anticlines and synclines.

A break in the rock layers along which there is no movement is called a ______

Once movement occurs, the fracture is known as a ______.

1.

The type of fault is determined by how the blocks of rock on either side of the fault move.

- _____ the block of rock above the fault
- _____ the block of rock below the fault

Three Main Types of Faults:

- occurs along divergent boundaries (tension force present)
- The hanging wall drops down below the foot wall
- 2.
- occurs along convergent boundaries (compression force)
- The hanging wall moves up above the foot wall
 - *
- special type of reverse fault where the hanging wall is pushed at such a low angle (not steep) that it moves UP AND OVER the foot wall
- 3. _____
- occurs at transform boundaries (shearing force)
- The rocks along either side of the fault slide horizontally
- Ex. _____

Draw & label each of the 4 types of faults.

Mountain Formation:

Four Types of Mountains:

- 1. ______ Found where continents have collided. Ex.
 - _____ areas of flat-topped land high above sea level • Ex.
- 2. _______ Formed by faults, where part of the earth's crust have been broken into large blocks and then were lifted above the surrounding crust. Ex.
 ________ long, narrow valleys formed when blocks of rock slipped downward o Ex.
- 3. ______ Form when molten rock erupts onto earth's surface. Ex.
- 4. ______ An unusual type that is formed when molten rock rises but does not break through the surface.

Ex.