Ecosystems: What Are They and How Do They Work? Chapter Three

Ecological Terminology

- is the study of how organisms interact with each other and their nonliving environment.
- Ecological Levels of Organization: organism \rightarrow species \rightarrow _____ \rightarrow community \rightarrow _____

Ecosystem Concepts

- _____ are large regions characterized by a distinct climate and specific life forms
 - Biomes may consist of many ecosystems
 - Aquatic biomes are also called Aquatic Life Zones
- _____ are regions where one ecosystem merges with another, and show characteristics of both ecosystems

Autotrophs & Heterotrophs

- Autotrophs, or producers, make their own food.
 - photosynthesis: $6CO_2 + 6H_2O + solar energy \rightarrow C_6H_{12}O_6 + 6O_2$
 - $: CO_2 + O_2 + 4H_2S \rightarrow CH_2O + 4S + 3H_2O$
 - Heterotrophs, or consumers, feed on other organisms.
 - most consumers exhibit _____ respiration:
 - $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$
 - decomposers exhibit anaerobic respiration, or _____
 - The end products may be methane gas (CH₄), ethyl alcohol (C₂H₆O), acetic acid (C₂H₄O₂) or hydrogen sulfide (H₂S)

Energy Flow in Ecosystems

- Food webs are made up of many interwoven ______
- Energy stored in biomass is transferred from one trophic level to another, with some usable energy degraded or lost to the environment as low-quality heat in each transfer. (ecological _____)

Biomass Productivity

- The rate at which an ecosystem's producers convert solar energy into chemical energy as biomass is the ecosystem's _____ primary productivity (GPP).
- The GPP does not account for the use of energy by organisms. Therefore, the _____ Primary Productivity (NPP) is the rate at which producers store chemical energy minus the rate at which producers use chemical energy.

The Limiting Factor Principle

- Within the law of ______, one factor often turns out to be more important that others in regulating population growth. This is described in the Limiting Factor Principle:
 - Too much or too little of any ______ factor can limit or prevent growth of a population, even if all other factors are at or near the optimum range of tolerance

Biogeochemical Cycles

- Biogeochemical cycles are natural processes that recycle nutrients in various chemical forms from the nonliving environment to living organisms and back again.
 - In hydrologic cycles, _____ cycles through the biosphere.
 - In atmospheric cycles, a large portion of a given element exists in gaseous form in the atmosphere.
 - In sedimentary cycles, elements do not have a significant gaseous phase and occur primarily in the

The Hydrologic Cycle

- The main processes of the hydrologic cycle (water cycle):
 - evaporation: water to water vapor
 - transpiration: evaporation from leaves of water extracted from soil
 - _____: water vapor to water
 - precipitation: rain, sleet, hail and snow
 - infiltration: movement of water into soil
 - _____: downward flow of water through soil into groundwater storage areas called aquifers
 - runoff: downslope surface movement back to the sea

The Carbon Cycle

- The carbon cycle is based primarily on carbon _____ gas, and has five main processes:
 - photosynthesis: plants take CO₂ from the atmosphere and convert it complex carbohydrates
 - _____: consumers take complex carbohydrates and create CO₂
 - decomposition: decomposers take complex carbohydrates and create CO₂
 - _____: biomass is buried and compressed into fossil fuels
 - combustion: fossil fuels or biomass is burned, releasing CO₂

The Nitrogen Cycle

- Nitrogen gas makes up _____% of the atmosphere. Multicellular plants and animals cannot take this up, however, lightning and certain bacteria can convert it to other compounds as part of the nitrogen cycle.
 - Nitrogen fixation: bacteria convert N₂ (atmospheric nitrogen) into NH₃ (ammonia)
 - Nitrification: $NH_3 \rightarrow NO_2^-$ (nitrite) $\rightarrow NO_3^-$ (_____)
 - Assimilation: plant roots take up NH₃, NH₄⁺ (ammonium ion) and NO₃⁻ and convert into complex organic molecules
 - Ammonification: decomposers break down complex organic molecules into NH₃ and NH₄⁺
 - _____: bacteria convert NH_3 and NH_4^+ into NO_2^- and NO_3^- then into N_2 and N_2O (nitrous oxide)

The Phosphorus Cycle

- Phosphorus cycles through water, the earth's crust, and living organisms. The cycling is much quicker through the living components than through geological formations.
 - _____: slow breakdown of terrestrial phosphate, PO₄³⁻
 - runoff: flow of phosphate into aquatic systems via precipitation
 - _____: take up of phosphorus by producers, and, in turn, consumers
 - deposition: return of phosphorus to soil and rock through decay and waste products of organisms

The Sulfur Cycle

- Most of the earth's sulfur is tied up in underground rocks, however, it is found in organic compounds.
 - decomposition: breakdown of organic matter in the absence of O_2 leads to the release of H_2S (hydrogen sulfide)
 - vulcanism: release of SO₂ (sulfur dioxide) by volcanoes
 - _____: sulfur in the form of H_2SO_4 (sulfuric acid)
 - assimilation: organisms take up H₂SO₄ and SO₄⁻² (sulfate salts)

Human Intervention

- Humans intervene in the biogeochemical cycles in many ways:
 - withdrawing large quantities of fresh water from streams, lakes, and underground sources
 - runoff of phosphate and nitrogen to aquatic systems from ______ and livestock
 - clearing vegetation from land, which increases runoff, reduces infiltration, and decreases atmospheric CO₂ absorption
 - _____agriculture in tropical rainforests reduces the amount of phosphate in the ecosystem and adds CO₂ to the atmosphere
 - burning fossil fuels releases CO₂ (leads to global warming), NO (leads to acid rain and tropospheric ozone, and global warming), and NO₂ (leads to depletion of stratospheric ozone)
 - _____ of large quantities of phosphate for detergents and fertilizers disrupts ecosystems
 - smelting metallic minerals to free metals such as copper and lead